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SUMMARY:
This work investigates the use of a large-eddy simulation (LES) based multi-fidelity (MF) model for wind loading
predictions on a high-rise building. The model aims at reducing the computational time required for wind loading
predictions for the full wind rose. We combine data from a coarse LES, low fidelity (LF) model evaluated at a large
number of wind directions with data from a fine LES, high fidelity (HF) model evaluated at a subset of those wind
directions, and provide predictions for all wind directions with accuracy close to that of the HF model at a reduced
cost. To do so, we train Neural Networks (NN) to learn the discrepancy between LF and HF at wind directions for
which we have both LF and HF data, and then we use them to correct LF predictions for wind directions at which HF
data is not available. We validate these neural network predictions against HF data and compare the results against
a previously developed framework that employs Co-Kriging to perform the same task. The results show that the
proposed multi-Fidelity framework provides accurate results in terms of mean, root-mean-square (rms), peak min, and
peak max pressure coefficient (Cp) and outperforms Co-Kriging in terms of predictive capabilities.
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1. INTRODUCTION
Computational Fluid Dynamics (CFD) can play an important role in estimating wind loading on
high-rise buildings. However, to enable its routine use for building design, a significant compu-
tational speed-up is required. To do so, we aim to combine data from cheap, low-fidelity (LF)
large-eddy simulations (LES) with data from expensive, high-fidelity (HF) LES in a multi-fidelity
(MF) framework to predict wind loading on the facade of a high-rise building for the full wind rose.
In particular, we will combine LF data computed at 10 wind directions with HF data computed at
5 to provide wind loading predictions with accuracy close to the HF model at a fraction of its cost
(i.e. 50% cost reduction).

2. CASE STUDY AND LES DATA SET
We consider the flow around a 1:50 scale rectangular plan high-rise building with an incoming
neutral atmospheric boundary layer (ABL). The building model has a height, width, and breadth
of respectively 2m, 0.3m, and 1m. Figure 1a shows the building schematic. The reader is referred
to Lamberti et al., 2020 for more details on the model.

The Quantities of Interest (QoIs) for this work are the mean, rms, peak max, and peak mean
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(a) High-rise building schematic. (b) Taps distribution on the building
surface.

Figure 1. High-rise building model and pressure taps distribution on its surface.

pressure coefficients on the building surface:
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where p is the pressure, ρ is the standard air density, and UH is the ABL velocity at roof height,
which is 7.8m{s. The over-line p.q represents time-averaged quantities, the prime p.q1 represents
temporal fluctuations, while xp.q and |p.q indicate peak quantities computed using the extreme value
analysis outlined in Cook and Mayne, 1980.

Our dataset consists of a low-fidelity and a high-fidelity set of LES simulations. The difference
between the two sets of simulations is their mesh resolution: the control volumes used for the low-
fidelity mesh are 2.3 times larger in each direction than the ones used for the high-fidelity mesh.
Each LES setup is used to evaluate the wind loading on the building façade for 10 different wind
directions in the r0˝;90˝s interval. The time series of the pressure on the building surface from
each LES is sampled at „ 1500 pressure taps. Figure 1b shows the pressure taps distribution on
the building surface. The data is processed to construct adimensional, Galilean invariant features
that will be used to train the neural network.

3. FRAMEWORK AND NEURAL NETWORK ARCHITECTURE
In this study, we combine data from LF simulations evaluated at all 10 wind directions with data
from HF simulations evaluated at 5 of those wind directions to build the multi-fidelity model. We
then investigate if the multi-fidelity model can accurately predict the HF model response at the 5
wind directions at which we withheld HF data when building the model. To do so, we train neural
networks to learn the discrepancy ∆Cp,i between LF and HF data for every pressure coefficient at
all locations of interest:

∆Cp,i “ CHF
p,i ´CLF

p,i ; (2)

where i denotes either the mean, rms, peak max, or peak min pressure coefficient at a specific
location, HF denotes the HF model predictions, while LF denotes the LF model predictions. We
train the neural network with features from LF and HF data from the 5 wind directions at which
we have both HF and LF data using ∆Cp,i as labels. Then, we use features from LF data at the
5 wind directions at which we withheld HF to compute the HF-LF model discrepancy with the
neural network model and we use it to correct the LF model response.



In this initial study, we adopt a multi-task neural network architecture that directly outputs all the
QoIs. Figure 2 shows the neural network architecture. The first "shared" layers of neurons of the
network are shared by the four tasks. This allows the network to gain some knowledge on shared
traits among the tasks. After the last shared layer, the neural network branches out into multiple
dedicated layers for each task, and each branch outputs the discrepancy described in equation
(2). Finally, the discrepancy is used to correct the model response and predict the QoIs. We use
ADAM to compute the neural network parameters update along with minibatch gradient descent.
We define the loss L to be

L “
RMSENN

RMSELES ` 1
(3)

where RMSE is the root-mean-squared error, NN denotes the neural network predictions, and LES
denotes the LES predictions. This loss allows to account for the relative improvement provided by
the Multi-fidelity framework with respect to LES results. To account for the non-uniform pressure
tap distribution on the building surface, we define the RMSE as

RMSEi “
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where i denotes either NN or LF, x represents the pressure tap location on the building surface, θ

is the wind direction, and A is the tributary area of each pressure tap.

We tune the neural networks in terms of number of shared layers, number of individual layers,
number of neurons for each layer, learning rate, and batch size. To tune the hyperparameters we
use random grid search, and to reduce the parameter space we use the same architecture for each
set of individual layers.

Figure 2. Neural network architecture. HF and LF features enter the layers shared by the four tasks, which eventually
branch out into one individual layer for each task, each with the same number of layers and neuron per layer. The

individual layers output the discrepancies, which are then used to predict the HF model response.

4. PRELIMINARY RESULTS
This section considers the case of an equispaced dataset: we use HF and LF data in t0˝;20˝;40˝;60˝;80˝u

while we withheld HF data in t10˝;30˝;50˝;70˝;90˝u. Table 1 compares the RMSE of the LF and



the NN model responses with respect to the HF responses. The results show that the NN con-
sistently improves the LF model responses by reducing the LF model RMSE from 39% to 58%.
Figure 3 shows a comparions of the low-fidelity, multi-fidelity, and high-fidelity model predictions
for the rms Cp for a wind direction we did not use to train the neural network (i.e. 90˝)

Figure 3. Comparison of the LF, MF, and HF model predictions for the rms Cp for the 90˝ wind direction.

To make a more insightful comparison, we can evaluate the percentage of the building surface over
which the NN and the LF model predictions fall within a reasonable margin from the HF model
predictions. These margins are defined as ˘0.1 for Cmean

p , ˘0.05 for Crms
p , and ˘0.2 for both

Cpeak,min
p and Cpeak,max

p . To do so, we first compute the absolute error of the NN and the LF model
at every point on the building surface, and then we use the points’ tributary area to estimate the
portion of the building surface over which the predictions fall within the aforementioned bounds.
Table 2 shows the results of such a procedure. The table clearly shows that the NN significantly
reduces the LF model error and yields acceptable results over most of the building surface.

Table 1. RMSE comparison between
Cmean

p Crms
p Cpeak,min

p Cpeak,max
p

RMSENN 0.0394 0.0173 0.113 0.0512
RMSELF 0.0650 0.0371 0.195 0.121

Table 2. Percentage of the building area over which QoIs are predicted within reasonable bounds.
Cmean

p Crms
p Cpeak,min

p Cpeak,max
p

Neural Network 97% 97% 92% 99%
Low-fidelity model 92% 82% 77% 91%
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